Reliability Assessment with Fuzzy Random Variables Using Interval Monte Carlo Simulation

نویسندگان

  • Ehsan Jahani
  • Rafi L. Muhanna
  • Mohsen A. Shayanfar
  • Mohammad A. Barkhordari
چکیده

In this work structural reliability assessment is presented for structures with uncertain loads and material properties. Uncertain variables are modeled as fuzzy random variables and Interval Monte Carlo Simulation along with interval finite element method is used to evaluate failure probability. Interval Monte Carlo is compared with existing search algorithms used in the reliability assessment of fuzzy random structural systems for both efficiency and accuracy. The genetic algorithm as one of the well developed approaches is selected for comparison. Fuzzy randomness is used as a model for handling both aleatory and epistemic uncertainties. Fuzzy quantities are calculated using the α-cut approach. In the case of Interval Monte Carlo, bounds on response quantities are obtained for each α-cut using only one run of interval finite element method, however genetic approach requires performing Monte Carlo Simulation for each of the considered different possible combinations within the search domain (α-cut) and running finite element for each of the Monte Carlo realizations. In the presented examples both load and material uncertainties are considered. Numerical results show the computational efficiency of the In*To whom correspondence should be addressed. E-mail: [email protected]. terval Monte Carlo approach and its superiority to the alternative search approaches such as optimization and genetic algorithms. In addition, results show how that Interval Monte Carlo approach provides guaranteed and sharp enclosure to the system solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Load Expectation Assessment in Deregulated Power Systems Using Monte Carlo Simulation and Intelligent Systems

Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In this paper, generation reliability is considered, and a method for its assessment using intelligent systems is proposed. Also, because of power market and generators’ forced outages stochastic behavior, Monte Carlo Simulation is used for reliability evaluation. Generation r...

متن کامل

Monte Carlo Comparison of Approximate Tolerance Intervals for the Poisson Distribution

The problem of finding  tolerance intervals receives very much attention of researchers and are widely used in various statistical fields, including biometry, economics, reliability analysis and quality control. Tolerance interval is a random interval  that covers a specified  proportion of the population with a specified confidence level. In this paper, we compare approximate tolerance interva...

متن کامل

Interval quasi-Monte Carlo method for reliability assessment with imprecise probability

Reliability analysis of structures is often performed on the basis of limited data. Under this circumstance, there are practical difficulties in identifying unique distributions as input for a probabilistic analysis. However, the selection of realistic probabilistic input is critical for the quality of the results of the reliability analysis. This problem can be addressed by using an entire set...

متن کامل

Reliability and Sensitivity Analysis of Structures Using Adaptive Neuro-Fuzzy Systems

In this study, an efficient method based on Monte Carlo simulation, utilized with Adaptive Neuro-Fuzzy Inference System (ANFIS) is introduced for reliability analysis of structures. Monte Carlo Simulation is capable of solving a broad range of reliability problems. However, the amount of computational efforts that may involve is a draw back of such methods. ANFIS is capable of approximating str...

متن کامل

Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp.-Aided Civil and Infrastruct. Engineering

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2014